Pairwise and Multiple Sequence Alignment

張傳雄
國立陽明大學 遺傳學研究所
09-23-2002
Sequence Alignment vs. Similarity Searching

- Sequence alignment and similarity searching are different problems

- **Similarity searching** (Blast, Fasta, Ssearch)
 - Searching for homologies to elucidate the function of an unknown protein
 - Produces alignments, but the desired result is the **score**

- **Sequence alignment**
 - Searching for consensus sequence
 - Produces a score, but the desired result is the **sequence**
Why do we want to align sequences?

1. Assigning functions to unknown proteins
2. Determine relatedness of organisms
3. Identify structurally, functionally, evolutionally similarities
4. Make predictions about the 3D structure
 - Because “similarity” may be an indicator of “homology” and thus provide some insight into function or gene identification.
Types of Sequence Alignments

- **Pairwise**
 - Two sequences
 - Local alignment
 - Gapped or ungapped

- **Multiple**
 - Three or more sequences
 - Global alignment

From DDT 5: 263, 2000
Global alignment

- match as many characters as possible from end to end
- find an alignment with highest total score
- regions of high local similarity may be ignored in favor of a higher overall score

Example:

```
THIS-ISAGLALALIGNMENT
||   ||   ||  ||| |
THEREISTHEAL- IGN-EDSEQ
```
Local Alignment

Local alignment
- find subsequences with highest density of matches
- find regions with high local scores
- sequence similarities may extend beyond the local subsequence with a lower degree of similarity

Example:

```
--------LALIGNM----
       |||||
--------EALIGNNE-----
```

- Local alignments are better for database searching and for finding similar domains since we can look for regions of similarity.
Ungapped alignments

Ungapped

- sequence comparisons are roughly proportional to the square of the average lengths

MATCHES

| | |

MAKERS
Gapped alignments

Gapped
If gaps of any lengths at any position would be allowed:
- computationally very expensive
- alignments would not be very meaningful

MATCHES
|| | |
MA---KERS

Need a manageable number of gaps!
Gap Penalties

• Inclusion of gaps and gap penalties is necessary in order to obtain the best alignment
• If gap penalty is too high, gaps will never appear in the alignment
• If gap penalty is too low, gaps will appear everywhere in the alignment
• Most alignment programs will suggest gap penalties that are appropriate for a given scoring matrix
Gap penalties

- Reduce number of gaps in the alignment
- Ensure a more meaningful alignment
- Opening a gap is costly
- Extending a gap is cheap

Examples:
Gap opening penalty = 12
Gap extension penalty = 1
Gap penalties

\[G = g + \ln \]

G = gap penalty

g = cost of opening a gap

l = cost of extending the gap by one

n = length of the gap

* In scoring matrices gap penalties are applied when not moving from \(i,j\) to \(i-1, j-1\)
Impact of gap penalties

Case 1: Gap penalty: low Mismatch cost: high
MARCHMADNESSANDBASKETBALL
-ARCHY----ISA----BASKET----CASE

Case 2: Gap penalty: medium Mismatch cost: medium
MARCHMADNESSANDBASKETBALL
-ARCHY----ISA----BASKETCASE

Case 3: Gap penalty: high Mismatch cost: low
MARCHMADNESSANDBASKETBALL
-ARCHYISABASKETCASE
Rules of thumb for gap penalties

- Gap **opening** penalty: should be 2 – 3 times larger than the most negative value in the substitution matrix that is being used
- Gap **extension** penalty: should be 0.1 to 0.3 times the value of the gap opening penalty
Pairwise Sequence Alignments

HBA_HUMAN GSAQVKGHGKKVADALTNAVHVDMPNALSALSALSDLHAKL
 G+ +VK+HGKKV A+++++AH+D++ ++++LS+LH KL
HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFTATLSELHCDKL
HBA_HUMAN GSAQVKGHGKKVADALTNAVHVDMPNALSALSALSDLHAKL
 ++ ++++H+ K + +A ++ +L+ L++++H+ K
LGB2_LUPLU NNPELQAHAHKVFKLVYEAAAIQLQVTVGVTVDATLKNLGSVHVS KG
HBA_HUMAN GSAQVKGHGKKVADALTNAVHVDMPNALSALSALSDLHAKL
 G+S+ +G +++ +D L ++ H+ D++ A +AL D ++AH+
F11G11.2 GSGYLVGDSLTFVDDL--VAQHTADLLAANAALLDEFQFKAHQE
The sequence alignment problem

1. THESESENTENSESALIGN--NICELY
 |||||| || | ||||| ||||
2. THESEQENCE----ALIGNEDNICELY

1. THESESENTENSESALIGN--NICELY
 ||||| || | ||||| |||||
2. THESE--Q--ENCE--ALIGNEDNICLEY

1. THESESENTENSESALIGN--NICELY
 ||||| || | ||||| |||||
2. THE--SEQ--ENCE--ALIGNEDNICLEY
Pairwise Alignment Methods

1. Dot matrix analysis
 (Gibbs and McIntyre)

2. Dynamic programming algorithms
 (Needleman-Wunsch, Smith-Waterman)

3. Heuristic Algorithms = Word or k-tuple methods
 (BLAST, FASTA)
1. Dot matrix analysis

Advantages:
- **all** possible matches between 2 sequences are displayed
- readily reveals insertions & deletions
- readily identifies direct in inverted repeats
- same algorithm is used for DNA, RNA and proteins

Disadvantages:
- doesn’t show an actual sequence alignment
- qualitative evaluation of alignments
- statistical significance of alignment is not obvious
Sources for dot matrix programs

- DNA Strider \hspace{0.5cm} Mac
- MacVector \hspace{0.5cm} Mac
- Dotlet \hspace{0.5cm} Mac, Win, Unix
 \hspace{0.5cm} http://www.isrec.isb-sib.ch/java/dotlet/Dotlet.html
- Dotter \hspace{0.5cm} Unix
 \hspace{0.5cm} http://www.cgr.ki.se/cgr/gropus/sonnhammer/Dotter.html
- EMBOSS
 \hspace{0.5cm} http://binfo.ym.edu.tw/emboss/Apps/dotmatcher.html
 - Dotmatcher
- GCG (Genetics Computer Group)
 \hspace{0.5cm} [http://nun.oit.unc.edu/gcgmanua](http://nun.oit.unc.edu/gcgmanual/)
 - Compare and Dotplot
Compare and DotPlot

- **Compare**: calculation
 - Window/Strigency comparisons: use a scoring matrix and a moving window
 - Word comparison: use a hash-table or linked-list approach (perfect match)

- **DotPlot**: graphics
Alignments & Scoring

Global (e.g. haplotype)

ACCACACA
::xx::xx:
ACACCATA
Score = 5(+1) + 3(-1) = 2

Local (motif)

ACCACACA
:: :: ::
ACACCATA
Score = 4(+1) = 4

Suffix (shotgun assembly)

ACCACACA
:: ::
ACACCATA
Score = 3(+1) = 3

Nucleic Acid

• Identical: 1
• Different: 0
Diagonal Matrix Method

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

identical = 1

different = empty

Off Diagonal Line Represents Repeat within sequence analyzed
How dot matrix analysis works
How dot matrix analysis works

- Direct Repeat
- Inverted Repeat
- Aligned sequence
How to read a dot matrix plot?
Window

Assume window Size = 5

88, 96, 92, 74, 56, 66, 85, 97, 82, 77

81, 77, 75, 76, 77, 81
Stringency

88, 96, 92, 74, 56, 66, 85, 97, 82, 77

Stringency = 79

01, 01, 01, 00, 00, 00, 01, 01, 01, 00
Dot matrix analysis with DNA

Settings:
Vertical scale: lambda cI
Horizontal scale: phage P22 c2
Window size: 1
Stringency: 1
Dot matrix analysis with DNA

Settings:
Vertical scale lambda cI
Horizontal scale: phage P22 c2
Window size: 11
Stringency: 7
Dot matrix analysis with DNA

Settings:
Vertical scale lambda cI
Horizontal scale: phage P22 c2
Window size: 23
Stringency: 15
Dot matrix analysis with proteins

Settings:
Vertical scale lambda cI
Horizontal scale: phage P22 c2.
Window size: 1
Stringency: 1
Dot matrix analysis with proteins

Settings:
Vertical scale lambda cI
Horizontal scale: phage P22 c2
Window size: 3
Stringency: 2
Effect of window size
Rules of thumb

• **DNA sequence alignments**
 - use **large** windows (7 - 11)
 - use **high** stringencies

• **Protein sequence alignments**
 - use **small** windows (1 - 3)
 - use **lower** stringencies
2. Dynamic Programming

- Decompose a large problem into sub-problems
- Each sub-problem is identical to the original problem except the size is smaller
- Use the same strategy to solve sub-problems and store answers in a table
- Combine solutions of the sub-problems by table “look-up”
- Used when many solutions are possible and an optimal solution needs to be found
Dynamic Programming (DP) Algorithms

Advantages:
- guaranteed to provide the **optimal** (i.e. highest scoring) alignment (mathematically proven)
- user defined choice of **substitution matrix**
- user defined **gap penalties**
- may provide one or more sequence alignments

Disadvantages:
- relatively slow, computational steps increase as the square or cube of the sequence lengths
Dynamic Programming

- First used by Needleman and Wunsch (1970) for global alignment and for local alignment by Smith and Waterman (1981)
- Alignment is generated by starting at the ends of the sequences and by following a scoring scheme for matches, mismatches and gaps
- Breaks down a large problem into a series of small problems
- The process of finding the best path through a simple dot plot comparison of the two sequences
Implementations of DP methods

Global alignment (Needleman & Wunsch)

- Compare two sequences in their entirety
- Insert gaps as necessary to make the sequences the same lengths

Local alignment (Smith-Waterman)

- Compare a portion of one sequence to a portion of another
- Look for the “best” possible alignment of sub-regions
Smith-Waterman algorithm

• **Local** alignment method
• Does not place any restrictions on the evolutionary model
• Better at finding alignments in diverged sequences
• Most rigorous method
• Very sensitive
• Computationally expensive
How DP works (3 steps)

1. Generate a sequence vs. sequence matrix; fill in the best scores from [0,0] to [n,m]. Keep track of pointers to allow trace-back.
2. Identify highest score in matrix
3. Trace back to start to get alignment position by position
Step 1. Create and fill matrix

GLOBAL

<table>
<thead>
<tr>
<th>Seq. T</th>
<th>j</th>
<th>j+1</th>
<th>…</th>
<th>…</th>
<th>…</th>
<th>…</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>H</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>Seq. S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>i+1</td>
<td></td>
<td></td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td>-10</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td>-6</td>
<td>-8</td>
<td>-10</td>
<td>-12</td>
<td>-14</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-16</td>
</tr>
</tbody>
</table>

Penalize 1st column and row
Position * gap penalty

LOCAL

<table>
<thead>
<tr>
<th>Seq. T</th>
<th>j</th>
<th>j+1</th>
<th>…</th>
<th>…</th>
<th>…</th>
<th>…</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>H</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>Seq. S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>i+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

No penalty for 1st col. or row
No negative numbers allowed
(minimum score is zero)
Step 1. Create and fill matrix

BestScore\[ij\] = BestScore\[<i,<j\] + Match\[i,j\] + GapPenalty

There are only three ways of pairing at each step

1. One residue from each sequence, either a match or mismatch
2. One residue from sequence T and a gap in sequence S
3. One residue from sequence S and a gap in sequence T

NOTE: Gaps don’t align with gaps

<table>
<thead>
<tr>
<th>Seq. S</th>
<th>T</th>
<th>H</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>H</th>
<th>E</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i+1</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td>-10</td>
<td>-12</td>
<td>-14</td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scoring contributions:
- Vertical: -2 (gap in T)
- Horizontal: -2 (gap in S)
- Diagonal: +1 if match
 -1 if mismatch
Step 2. Find highest score

Global alignment: (Needleman-Wunsch)
Find highest score in **final row** and **final column**

Local alignment: (Smith-Waterman)
Highest score **anywhere** in the matrix
(Trackback begins at highest score in matrix)
Step 2. Find highest score

GLOBAL

<table>
<thead>
<tr>
<th>Seq. S</th>
<th>0</th>
<th>-2</th>
<th>-4</th>
<th>-6</th>
<th>-8</th>
<th>-10</th>
<th>-12</th>
<th>-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>T</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
<td>-9</td>
</tr>
<tr>
<td>$i+1$</td>
<td>H</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
</tr>
<tr>
<td>...</td>
<td>A</td>
<td>-6</td>
<td>-5</td>
<td>-2</td>
<td>-3</td>
<td>-5</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>...</td>
<td>T</td>
<td>-8</td>
<td>-7</td>
<td>-4</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>...</td>
<td>C</td>
<td>-10</td>
<td>-9</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>...</td>
<td>H</td>
<td>-12</td>
<td>-11</td>
<td>-8</td>
<td>-5</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>...</td>
<td>E</td>
<td>-14</td>
<td>-13</td>
<td>-10</td>
<td>-7</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>m</td>
<td>R</td>
<td>-16</td>
<td>-15</td>
<td>-12</td>
<td>-9</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
</tr>
</tbody>
</table>

Highest score in last row and last column

LOCAL

<table>
<thead>
<tr>
<th>Seq. S</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$i+1$</td>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>...</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>...</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>23</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>...</td>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>...</td>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>25</td>
<td>39</td>
</tr>
<tr>
<td>m</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>31</td>
</tr>
</tbody>
</table>

Highest score anywhere

(0 = end of aligned subsequence)
Step 3. Trace back and align

- start at highest score and create alignment in reverse order
- print sequence S[i] and sequence T[j] as aligned
- trace pointer back to previous highest score
 - if sequence S[i-1] and sequence T[j-1] then print
 - if sequence S[i-1] and sequence T[j-N] then report matches to gaps for S[j-1] …T[j-(N-1)]
 - if sequence S[i-N] and sequence T[j-1] then print matches to gaps for S[i-1] …T[i-(N-1)]
Global alignment

<table>
<thead>
<tr>
<th>Seq. S</th>
<th>i</th>
<th>T</th>
<th>H</th>
<th>A</th>
<th>...</th>
<th>C</th>
<th>H</th>
<th>E</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i+1</td>
<td>-2</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
<td>-9</td>
<td>-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>-5</td>
<td>-2</td>
<td>-3</td>
<td>-5</td>
<td>-5</td>
<td>-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8</td>
<td>-7</td>
<td>-4</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-6</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10</td>
<td>-9</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12</td>
<td>-11</td>
<td>-8</td>
<td>-5</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-14</td>
<td>-13</td>
<td>-10</td>
<td>-7</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>-16</td>
<td>-15</td>
<td>-12</td>
<td>-9</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Scoring contributions:
- Vertical: -2 (gap in T)
- Horizontal: -2 (gap in S)
- Diagonal: +1 if match
- -1 if mismatch
Alignment paths & gap placement

seq. T

seq. S

No gap

gap in seq. T

gap in seq. S
Local alignment

<table>
<thead>
<tr>
<th>Seq. S</th>
<th>M</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>H</th>
<th>E</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>23</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>33</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>25</td>
<td>39</td>
</tr>
<tr>
<td>R</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>31</td>
</tr>
</tbody>
</table>

Scoring contributions:
- Vertical: -2 (gap in T)
- Horizontal: -2 (gap in S)
- Diagonal: +1 if match
 -1 if mismatch

Stop alignment when BestScore[ij] is zero
How to calculate the scores?
Back Tracing

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>G</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>G</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>-4</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
A scoring system is needed

Calculate the probabilities that:

1. a particular aa pair is found in the alignment
2. the same aa is aligned by chance
3. the insertion of a gap of one or more residues in one of the sequence would improve the alignment

1 and 2 are retrieved from a substitution matrix
Scoring schemes

• Given a scoring scheme,
 – an optimal alignment between two sequences is one with the best score (there might be more than one optimal alignment).
 – the score of the sequence pair is such a best score.

• Using the scores of sequence pairs one can:
 – investigate the hypothesis that two sequences diverged from a common ancestor
 – use the alignment of a pair of sequences that are judged to be related in order to discover common patterns.
 – by comparing scores among different species, get information to help reconstruct the phylogenetic tree that relates them all.
Nucleic Acid Scoring Matrices

- Incorporates information from mutational analysis which reveals transitions are more probable than transversions
- Matrices can be used to produce global or local alignments of nucleic acid sequences
Scoring Matrices

• Scoring Matrices are designed to detect signal above background, to detect similarities beyond what would be observed by chance alone.

• The simplest scoring mechanism is match = 1, mismatch = -1, but these values don’t work well for biological data.

• Because amino acids affect structure and reactivity, not all of the 400 aa pairs can be treated via a unitary match/mis-match matrix.
Significance of scoring matrices

• Sequence is not necessarily critical to protein function (3-D structure)
 – Humans can metabolize pig insulin

• Scoring matrices reflect the likelihood that one amino acid may be exchanged for another over some evolutionary distance and still preserve function
 – Empirical

• Some amino acids are critical
 – Cysteine almost never substitutes

• Expressed as logarithm of the ratio of the probabilities of two residues being aligned due to homology vs. due to random chance
Similarity or substitution matrices

- attempts to quantify whether a mutation preserves or disrupts the function of a protein
- reflect different degrees of evolutionary divergence
- provide a quantifiable measure for amino acid residue substitutions

Examples:

a) Point Accepted Mutations (PAM)

b) Block sum (BLOSUM)
Amino Acid Substitution Matrices

- Amino acid substitutions commonly occur in related proteins from different species
- Knowing the types of changes that are most and least common in a large number of proteins can assist with predicting alignments for any set of protein sequences
- If related protein sequences are quite similar, one can readily determine single-step amino acid changes
- In matrix, each position is filled with a score that reflects how often one amino acid would have been paired with another in an alignment of related protein sequences
PAM and BLOSUM Matrices

1) **PAM** (percent accepted mutation) – lists the likelihood of change from one amino acid to another in homologous sequences during evolution

2) **BLOSUM** – matrix values are based on a large set of ~2000 conserved amino acid patterns called **blocks**. Blocks come from a database of protein sequences representing more than 500 families of related proteins.

3) PAM matrices were the first matrices, BLOSUM matrices came later. For most applications, BLOSUM 62 is the default scoring matrix.
Comparison of PAM and BLOSUM Matrices

- PAM matrices are based on the prediction of the first changes that occur as proteins diverge from a common ancestor during evolution of a protein family.
- PAM model is designed to track the evolutionary origins of proteins.
- BLOSUM matrices are derived from considering all amino acid changes observed in an aligned region of related family of proteins.
- BLOSUM model is designed to find their conserved domains.
- In BLOSUM, not all mutations are counted equally (similar sequences are clustered and together).
- PAM matrices based on mutations observed throughout a global alignment, BLOSUM is based on conserved regions (blocks) which contain no gaps.
PAM vs. BLOSUM matrix

<table>
<thead>
<tr>
<th>PAM matrix (Dayhoff)</th>
<th>BLOSUM matrix (Henikoff)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Based on mutations in conserved and variable regions in global alignments</td>
<td>1. based exclusively on mutations in local, highly conserved regions w/o gaps</td>
</tr>
<tr>
<td>2. Limited # of observations</td>
<td>2. Large # of observations</td>
</tr>
<tr>
<td>3. Derived from an explicit evolutionary model</td>
<td>3. Derived with a sum-of pairs evolutionary model</td>
</tr>
</tbody>
</table>
Multiple Sequence Alignments

A. Block alignment

<table>
<thead>
<tr>
<th>VRALDF</th>
<th>KGDLRI</th>
<th>WWNA</th>
<th>GMIPVYVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVALYDF</td>
<td>KGKLRV</td>
<td>WCEA</td>
<td>GWVPNSNYI</td>
</tr>
<tr>
<td>VQALDF</td>
<td>RGDFHV</td>
<td>WWKG</td>
<td>GMFPNYEV</td>
</tr>
<tr>
<td>VVALYDF</td>
<td>KGDEYFI</td>
<td>WWRA</td>
<td>GYIPSNYV</td>
</tr>
<tr>
<td>FRAMYDY</td>
<td>DGAIIN</td>
<td>WMYG</td>
<td>GMLPANYV</td>
</tr>
<tr>
<td>VKALFDY</td>
<td>KSIQON</td>
<td>WWRG</td>
<td>LWFPSNYV</td>
</tr>
<tr>
<td>YRALYDY</td>
<td>LGDILTV</td>
<td>WLNG</td>
<td>GDFPPTYV</td>
</tr>
</tbody>
</table>

B. Segment alignment

<table>
<thead>
<tr>
<th>EVYRALDF</th>
<th>FNGNEEELPFKDGKDIR</th>
<th>DKP</th>
<th>WWADESEGRK</th>
<th>GMIPVYVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLFVVALDF</td>
<td>VASGDNLTSIKGEKLRV</td>
<td>LGYHHNGE</td>
<td>WCEAQTKNGQ</td>
<td>GWVPNSNYYP</td>
</tr>
<tr>
<td>TYPQALDF</td>
<td>DPOEDGELFRRGDFHIHV</td>
<td>MDNSDN</td>
<td>WWKGACHQT</td>
<td>GMFPNYVP</td>
</tr>
<tr>
<td>KKVVALARDF</td>
<td>MPMNANDLRKGDDEYTEFLIESNLP</td>
<td></td>
<td>WWRARDKNGQE</td>
<td>GYIPSNY</td>
</tr>
<tr>
<td>KIFRAMYDF</td>
<td>MAAADAEVSFKDGDAIINVQAI</td>
<td>DEG</td>
<td>WMYGTVQRTGRTGMPLANAYEA</td>
<td></td>
</tr>
<tr>
<td>CAVKALFDY</td>
<td>KAQREDELTFIKSIAIQRNVKQKEQ</td>
<td>G</td>
<td>WRGDDYGYGKQ</td>
<td>LWFPSNYVE</td>
</tr>
<tr>
<td>YQRALYDY</td>
<td>KKEREIDLHLGLDDITVNGKLVALGFSDQEEAPEEIGWLNGYNETTGERGDFPGTYVEY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Local alignment

```plaintext
# Multiple Sequence Alignments

## A. Block alignment

<table>
<thead>
<tr>
<th>VRALDF</th>
<th>KGDLRI</th>
<th>WWNA</th>
<th>GMIPVYVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVALYDF</td>
<td>KGKLRV</td>
<td>WCEA</td>
<td>GWVPNSNYI</td>
</tr>
<tr>
<td>VQALDF</td>
<td>RGDFHV</td>
<td>WWKG</td>
<td>GMFPNYEV</td>
</tr>
<tr>
<td>VVALYDF</td>
<td>KGDEYFI</td>
<td>WWRA</td>
<td>GYIPSNYV</td>
</tr>
<tr>
<td>FRAMYDY</td>
<td>DGAIIN</td>
<td>WMYG</td>
<td>GMLPANYV</td>
</tr>
<tr>
<td>VKALFDY</td>
<td>KSIQON</td>
<td>WWRG</td>
<td>LWFPSNYV</td>
</tr>
<tr>
<td>YRALYDY</td>
<td>LGDILTV</td>
<td>WLNG</td>
<td>GDFPPTYV</td>
</tr>
</tbody>
</table>

## B. Segment alignment

<table>
<thead>
<tr>
<th>EVYRALDF</th>
<th>FNGNEEELPFKDGKDIR</th>
<th>DKP</th>
<th>WWADESEGRK</th>
<th>GMIPVYVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLFVVALDF</td>
<td>VASGDNLTSIKGEKLRV</td>
<td>LGYHHNGE</td>
<td>WCEAQTKNGQ</td>
<td>GWVPNSNYYP</td>
</tr>
<tr>
<td>TYPQALDF</td>
<td>DPOEDGELFRRGDFHIHV</td>
<td>MDNSDN</td>
<td>WWKGACHQT</td>
<td>GMFPNYVP</td>
</tr>
<tr>
<td>KKVVALARDF</td>
<td>MPMNANDLRKGDDEYTEFLIESNLP</td>
<td></td>
<td>WWRARDKNGQE</td>
<td>GYIPSNY</td>
</tr>
<tr>
<td>KIFRAMYDF</td>
<td>MAAADAEVSFKDGDAIINVQAI</td>
<td>DEG</td>
<td>WMYGTVQRTGRTGMPLANAYEA</td>
<td></td>
</tr>
<tr>
<td>CAVKALFDY</td>
<td>KAQREDELTFIKSIAIQRNVKQKEQ</td>
<td>G</td>
<td>WRGDDYGYGKQ</td>
<td>LWFPSNYVE</td>
</tr>
<tr>
<td>YQRALYDY</td>
<td>KKEREIDLHLGLDDITVNGKLVALGFSDQEEAPEEIGWLNGYNETTGERGDFPGTYVEY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## C. Local alignment

```plaintext

```plaintext
# Multiple Sequence Alignments

## A. Block alignment

<table>
<thead>
<tr>
<th>VRALDF</th>
<th>KGDLRI</th>
<th>WWNA</th>
<th>GMIPVYVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVALYDF</td>
<td>KGKLRV</td>
<td>WCEA</td>
<td>GWVPNSNYI</td>
</tr>
<tr>
<td>VQALDF</td>
<td>RGDFHV</td>
<td>WWKG</td>
<td>GMFPNYEV</td>
</tr>
<tr>
<td>VVALYDF</td>
<td>KGDEYFI</td>
<td>WWRA</td>
<td>GYIPSNYV</td>
</tr>
<tr>
<td>FRAMYDY</td>
<td>DGAIIN</td>
<td>WMYG</td>
<td>GMLPANYV</td>
</tr>
<tr>
<td>VKALFDY</td>
<td>KSIQON</td>
<td>WWRG</td>
<td>LWFPSNYV</td>
</tr>
<tr>
<td>YRALYDY</td>
<td>LGDILTV</td>
<td>WLNG</td>
<td>GDFPPTYV</td>
</tr>
</tbody>
</table>

## B. Segment alignment

<table>
<thead>
<tr>
<th>EVYRALDF</th>
<th>FNGNEEELPFKDGKDIR</th>
<th>DKP</th>
<th>WWADESEGRK</th>
<th>GMIPVYVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLFVVALDF</td>
<td>VASGDNLTSIKGEKLRV</td>
<td>LGYHHNGE</td>
<td>WCEAQTKNGQ</td>
<td>GWVPNSNYYP</td>
</tr>
<tr>
<td>TYPQALDF</td>
<td>DPOEDGELFRRGDFHIHV</td>
<td>MDNSDN</td>
<td>WWKGACHQT</td>
<td>GMFPNYVP</td>
</tr>
<tr>
<td>KKVVALARDF</td>
<td>MPMNANDLRKGDDEYTEFLIESNLP</td>
<td></td>
<td>WWRARDKNGQE</td>
<td>GYIPSNY</td>
</tr>
<tr>
<td>KIFRAMYDF</td>
<td>MAAADAEVSFKDGDAIINVQAI</td>
<td>DEG</td>
<td>WMYGTVQRTGRTGMPLANAYEA</td>
<td></td>
</tr>
<tr>
<td>CAVKALFDY</td>
<td>KAQREDELTFIKSIAIQRNVKQKEQ</td>
<td>G</td>
<td>WRGDDYGYGKQ</td>
<td>LWFPSNYVE</td>
</tr>
<tr>
<td>YQRALYDY</td>
<td>KKEREIDLHLGLDDITVNGKLVALGFSDQEEAPEEIGWLNGYNETTGERGDFPGTYVEY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## C. Local alignment

```plaintext

```plaintext
# Multiple Sequence Alignments

## A. Block alignment

<table>
<thead>
<tr>
<th>VRALDF</th>
<th>KGDLRI</th>
<th>WWNA</th>
<th>GMIPVYVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVALYDF</td>
<td>KGKLRV</td>
<td>WCEA</td>
<td>GWVPNSNYI</td>
</tr>
<tr>
<td>VQALDF</td>
<td>RGDFHV</td>
<td>WWKG</td>
<td>GMFPNYEV</td>
</tr>
<tr>
<td>VVALYDF</td>
<td>KGDEYFI</td>
<td>WWRA</td>
<td>GYIPSNYV</td>
</tr>
<tr>
<td>FRAMYDY</td>
<td>DGAIIN</td>
<td>WMYG</td>
<td>GMLPANYV</td>
</tr>
<tr>
<td>VKALFDY</td>
<td>KSIQON</td>
<td>WWRG</td>
<td>LWFPSNYV</td>
</tr>
<tr>
<td>YRALYDY</td>
<td>LGDILTV</td>
<td>WLNG</td>
<td>GDFPPTYV</td>
</tr>
</tbody>
</table>

## B. Segment alignment

<table>
<thead>
<tr>
<th>EVYRALDF</th>
<th>FNGNEEELPFKDGKDIR</th>
<th>DKP</th>
<th>WWADESEGRK</th>
<th>GMIPVYVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLFVVALDF</td>
<td>VASGDNLTSIKGEKLRV</td>
<td>LGYHHNGE</td>
<td>WCEAQTKNGQ</td>
<td>GWVPNSNYYP</td>
</tr>
<tr>
<td>TYPQALDF</td>
<td>DPOEDGELFRRGDFHIHV</td>
<td>MDNSDN</td>
<td>WWKGACHQT</td>
<td>GMFPNYVP</td>
</tr>
<tr>
<td>KKVVALARDF</td>
<td>MPMNANDLRKGDDEYTEFLIESNLP</td>
<td></td>
<td>WWRARDKNGQE</td>
<td>GYIPSNY</td>
</tr>
<tr>
<td>KIFRAMYDF</td>
<td>MAAADAEVSFKDGDAIINVQAI</td>
<td>DEG</td>
<td>WMYGTVQRTGRTGMPLANAYEA</td>
<td></td>
</tr>
<tr>
<td>CAVKALFDY</td>
<td>KAQREDELTFIKSIAIQRNVKQKEQ</td>
<td>G</td>
<td>WRGDDYGYGKQ</td>
<td>LWFPSNYVE</td>
</tr>
<tr>
<td>YQRALYDY</td>
<td>KKEREIDLHLGLDDITVNGKLVALGFSDQEEAPEEIGWLNGYNETTGERGDFPGTYVEY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## D. Global alignment

<table>
<thead>
<tr>
<th>AEYVRLDF</th>
<th>FGNEEELPFKDGKDIRD</th>
<th>KPEQ</th>
<th>EEWWNASEDS</th>
<th>EGKRGMIIPVYVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLFVVALDF</td>
<td>VASGDNLTSIKGEKLRV</td>
<td>LGYHN</td>
<td>HNGEVCEAQTK</td>
<td>NGQGWVPNSNYYP</td>
</tr>
<tr>
<td>TYPQALDF</td>
<td>DPOEDGELFRRGDFHIHV</td>
<td>MDNSDN</td>
<td>DPWWKAGCH</td>
<td>GQTGMFPNYVPVNRNV</td>
</tr>
<tr>
<td>KKVVALARDF</td>
<td>MPMNANDSLRKGDEYTEFLIES</td>
<td></td>
<td>NLPWWRARDKNGQEGYIPSNYTEAEDS</td>
<td></td>
</tr>
<tr>
<td>KIFRAMYDF</td>
<td>MAAADAEVSFKDGDAIINVQAI</td>
<td>DEG</td>
<td>WMYGTVQRTGRTGMPLANAYEA</td>
<td></td>
</tr>
<tr>
<td>CAVKALFDY</td>
<td>KAQREDELTFIKSIAIQRNVKQKEQ</td>
<td>G</td>
<td>WRGDDYGYGKQ</td>
<td>LWFPSNYVE</td>
</tr>
<tr>
<td>YQRALYDY</td>
<td>KKEREIDLHLGLDDITVNGKLVALGFSDQEEAPEEIGWLNGYNETTGERGDFPGTYVEY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

Gene 270:17-30, 2001

YM-Genetics
What can a MSA be used for?

• Valuable for both DNA and Protein
  – Identification of highly conserved regions of homologous sequences (e.g., identify structural & functional domains or protein families, for secondary structure prediction, & design of primers for PCR, drugs and vaccines)
  – Residue conservation and acceptable amino acid substitutions (e.g., for evaluation of crucial residues for enzyme action and ligand binding)
  – Reconstruction of evolutionary relationships- phylogenetic trees
  – Structural alignment (Protein 3-D Modeling)

* The alignment of a family of sequences provides more information than the alignment of any pair of those sequences.
YM-Genetics

Analysis using MSA

- Protein/Gene family analysis
- Motif analysis
- Phylogenetic analysis

Sequence → Database search

Multiple homologous sequences

Generate MSA computationally

Edit MSA manually

Format MSA for presentation or further analysis

- Protein/Gene family analysis
- Motif analysis
- Phylogenetic analysis

Feedback to get more homologous sequences
Correct Alignment? Optimal Alignment?

- Except for highly identical sequences, it is impossible to unambiguously create a single correct MSA.
- For a given group of sequences, there is no single "correct" alignment, only an alignment that is "optimal" according to some set of calculations.
- Determining what alignment is best for a given set of sequences is really up to the judgement of the investigator.
- Success of the alignment will depend on the similarity of the sequences. If sequence variation is great it will be very difficult to find optimal alignment.
Algorithms for MSA

• Progressive alignment
  – Profile alignment
  – Iterative refinement methods

• Profile HMM training

• Multi-dimensional dynamic programming
How do we do a MSA? (Methods)

• Progressive global alignment of the sequences starting with an alignment of the most alike sequences and then building an alignment by adding more sequences.

• Iterative methods that make an initial alignment of groups of sequences and then revise the alignment to achieve a better result.

• Alignments based on locally conserved patterns found in the same order in the sequences.

• Use of statistical methods and probabilistic models of the sequences.
Progressive Pairwise Methods

• Most of the available multiple alignment programs use some sort of incremental or progressive method that makes pairwise alignments, then adds new sequences one at a time to these aligned groups.

• Sequences are chosen based on a “guide tree”.

• This is an approximate method!
Pairwise vs Multiple Sequences

- Pairs of sequences typically aligned using exhaustive algorithms (dynamic programming)
- Multiple sequence alignment using heuristic methods
Multiple Sequence Alignments

**Global alignment methods**
- ClustalW (most popular)
- PileUp

**Local alignment methods**
- Dialign
Progressive Pairwise Programs

• PILEUP is the multiple alignment program in the GCG package.

• CLUSTAL is another popular program that uses a similar algorithm.
PILEUP

- PILEUP is the MSA program that is part of the Genetics Computer Group (GCG) sequence analysis package
- Sequences are aligned pairwise using dynamic programming algorithm
- The scores are used to produce a phylogenetic tree, which is then used to guide the alignment of the most closely related sequences and groups of sequences
- Resulting alignment is a global alignment produced by the Needleman-Wunsch algorithm
PILEUP Drawbacks

- No recent enhancements such as gap modifications or sequence weighting comparable to those introduced for CLUSTALW
- As with other progressive alignment programs, does not guarantee an optimal alignment
- Major problem with progressive alignment programs such as CLUSTAL and PILEUP is the dependence of the final MSA on the initial pairwise alignments
- For closely related sequences, CLUSTAL is designed to provide an adequate alignment of a large number of sequences
The PILEUP Algorithm

- First, **PILEUP** calculates approximate pairwise similarity scores between all sequences to be aligned, and they are clustered into a dendrogram (tree structure).
- Then the most similar pairs of sequences are aligned.
- Averages (similar to consensus sequences) are calculated for the aligned pairs.
- New sequences and clusters of sequences are added one by one, according to the branching order in the dendrogram.
How ClustalW works

• based on Progressive Pairwise Alignment (PPA)
  1. **globally** align most similar sequences first
  2. construct a tree using **neighbor-joining**
     (determines the order in which subsequent seq. are incorporated into the alignment)
  3. align the sequences sequentially, guided by the phylogenetic relationships indicated by the tree
CLUSTAL

• **CLUSTAL** is a stand-alone (i.e. not integrated into GCG) multiple alignment program that is superior in some respects to **PILEUP**
  - Gap penalties can be adjusted based on specific amino acid residues, regions of hydrophobicity, proximity to other gaps, or secondary structure.
  - It can re-align just selected sequences or selected regions in an existing alignment
  - It can compute phylogenetic trees from a set of aligned sequences.
CLUSTALW Features

- Gap penalties can be adjusted based on specific amino acid residues, regions of hydrophobicity, proximity to other gaps, or secondary structure.
- It can re-align just selected sequences or selected regions in an existing alignment.
- It can compute phylogenetic trees from a set of aligned sequences.
ClustalW: Progressive Multiple Alignment

Multiple Alignment Step:
1. Aligning $S_1$ and $S_3$
2. Aligning $S_2$ and $S_4$
3. Aligning $(S_1, S_3)$ with $(S_2, S_4)$.

CLUSTAL X (1.81) multiple sequence alignment

CAS1_BOVIN  MKLLI LTCLVAVALARPKHPI KHQGLPQ- -------- EVL NEN-
CAS1_SHEEP  MKLLI LTCLVAVALARPKHPI KHQGLSP- -------- EVL NEN-
CAS1_PIG    MKLLI FI CLAVALARPKLPLRHQEHLQNEPDSRE--------
CAS1_HUMAN  MKLLI LTCLVAVALARPKLPLRYPERLQNPSESSE--------
CAS1_RABBIT MKLLI LTCLVATALARHKFHLGHKLTLQEQPESSEQEILKERK
CAS1_MOUSE  MKLLI LTCLVAAAFAMPRLHSRNAVSSQTQ- -------- QQHSSSE
CAS1_RAT    MKLLI LTCLVAAALALPRAHRRNAVSSQTQ- ------------

*:***: **.*.*:*:   .     :
Alignment of coding regions

- Nucleotide sequences much harder to align accurately than proteins
- Protein coding sequences can be aligned using the protein sequences
- Proteins are easier to align than DNA because they are more conserved
- Hint, if you need a DNA alignment, generate the protein alignment first and then use it to guide your DNA alignment

MMGSTLV ATGATGGGGAGUCCCCUCGU
M-GSTIV ATG---GGCGCCCCUUAUUGUG
How Dialign works?

- **Local** alignment approach
- identify gap-free fragments (called diagonals) of high similarity
- built segments into multiple alignment using an iterative approach
- works with DNA and proteins
When to use Dialign?

Dialign performs well when:

• sequences have **long terminal extensions**
• sequences have **large insertions**
• useful for finding **conserved blocks** within a set of sequences
Other commonly used programs for pairwise alignment

- **GCG**
  - gap (global)
  - bestfit (local)

- **EMBOSS**
  - matcher, est2genome (local)
  - stretcher (global)

- **Others**
  - Blast2sequences (local)
  - SIM4 (cDNA-genomic DNA)
Profile Analysis

- Profiles are made by performing the global msa of a group of sequences and then removing the highly conserved regions in the alignment in a smaller msa
- A scoring matrix for the msa, called a profile is made

Iterative Methods

- Attempt to correct initial alignment problems by repeatedly aligning subgroups of the sequences and then by aligning these subgroups into a global alignment of all the sequences
Steps to perform local alignments using a global MSA program

- Perform a databank search, or a seq. comparison
- Cut out sequences ranges that are homologous on the basis of the above results
- Perform global MSA on the select sequence ranges
In GCG, you use ...

Preliminary alignment

Alignment

Display

FastA / Local Blast

Compare / DotPlot

PileUp

Pretty

PlotSimilarity
# Local Sequence Alignment

<table>
<thead>
<tr>
<th></th>
<th>Sequence 1</th>
<th>Sequence 2</th>
<th>Sequence 3</th>
<th>Sequence 4</th>
<th>Sequence 5</th>
<th>Sequence 6</th>
<th>Sequence 7</th>
<th>Sequence 8</th>
<th>Sequence 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YICSFADCGAAYNKNWKLQ*AHLCKH</td>
<td>TGEK<em>PFPCKEELGCEKGFSTLHHLT</em>RHSL*TH</td>
<td>TGEK<em>NFTODSGCDLRFITTKANMK</em>KHFNFRFH</td>
<td>NIKICVYVCHFENCNGKAKKKNQLK<em>VHQF</em>SH</td>
<td>TQQL<em>PYECPHEGCDKRSFLPSRLK</em>RHEK*VH</td>
<td>AG--*YPCKKDDSCSFVGKTWTLYLKVAECH</td>
<td>QD--<em>LAVC--DVCRNRFHRHKDYLR</em>DHQK*TH</td>
<td>EKERTVYLCPRDGCDRSTTAFNLK*SHIQSFH</td>
<td>EEQR<em>PFVCEHAGCGKCFAMKKSLE</em>RHSV*VH</td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>67</td>
<td>98</td>
<td>129</td>
<td>159</td>
<td>188</td>
<td>214</td>
<td>246</td>
<td>276</td>
</tr>
</tbody>
</table>

**TGEK*PYVC...DGCDKRFETKK...LKRH...** Consensus
Multiple Alignment Strategies

• Align pairs of sequences using an optimal method
• Choose representative sequences to align carefully
• Choose sequences of comparable lengths
• Progressive alignment programs such as Clustal for multiple alignment
• Progressive alignment programs may be combined
• Review alignment by eye and edit