BioMart

Data integration and retrieval made easy

Damian Smedley
European Bioinformatics Institute
Changing research focus

- The increase in high-throughput genomic technologies
- Growing sophistication of the user
- Research questions involving big datasets
 - Multi-species
 - Multi-experiments
 - Multi-datasets
- Data sources distributed
Solutions

- Bioinformatics support
 - Processing data files
 - Use third party software
 - In house processing of data

- No bioinformatics support?
- BioMart: one-stop shop for biological data
- For scientists with no programming experience and bioinformaticians
BioMart

- Fast and flexible integration system
- Query optimised database
- Interactive user-friendly interfaces (MartView, MartExplorer, MartShell)
- Allows user to group and refine biological data based upon many criteria
BioMart

- Tabulated data or FASTA sequence output in text, HTML or Excel formats
- First applied to Ensembl data (Ensembl, Vega and Est genes, SNPs): EnsMart
- BioMart includes UniProt proteomes and MSD protein structure data
- ArrayExpress soon
Talk summary

- BioMart interfaces: data access
- Usage examples
- System overview
Data access
Gene filters/attributes

- Region: chromosome position, band or marker
- External identifiers including microarray probes
- Gene Ontology and expression vocabulary terms
- Multi species: orthologs and upstream regions
- Protein and family identifiers
Gene filters/attributes

- Gene associated SNPs: location, synonymous status, ka_ks ratio
- Transcript sequences:
 - Coding
 - cDNA
 - Peptide
 - Exons
 - UTRs and upstream/downstream
 - User-specified flanking sequence
SNP filters and attributes

- Region
- Validation status
- Frequency data and population status
- Location in genes: coding, intronic etc
- SNP sequences
Usage examples
Candidate gene identification
SNPs for candidate genes

<table>
<thead>
<tr>
<th>SNP ID</th>
<th>Gene</th>
<th>Population</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENST00000163781.1</td>
<td>ENST00000163781.1</td>
<td>NORTH AMERICA BC_12_C:G 0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>ENST00000163781.1</td>
<td>ENST00000163781.1</td>
<td>EAST ASIA BC_12_A:G 0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>ENST00000163781.1</td>
<td>ENST00000163781.1</td>
<td>N XMTH ANE</td>
<td></td>
</tr>
</tbody>
</table>
Multi species
System Overview
BioMart

- Schema specification
- XML-based configuration
- Admin tools
 - Configuration/Building
- Data access
 - Libraries and interfaces (Perl, Java)
‘Reversed Star’ schema
Key features

- **Generic**
 - Universal BioMart data model
 - Query-based interface
 - No data dependent abstractions

- **Network scalability**
 - Query optimised schema

- **Platform portability**
 - Automatic, simple SQL
Key abstractions of generic system

Mart

Dataset

Attribute

Filter

GENE CENTRAL

gene_id(PK)
gene_stable_id
gene_start
gene_chrom_end
chromosome
gene_display_id
description
Deploying BioMart

Source databases → Transformation → Mart → Configuration

Specific scripts for each database
MartEditor

XML
Admin tools

- **MartEditor**
 - XML editor with build-in system logic
 - Configure existing interfaces
 - Automatically create new, ‘naive’ configuration
 - Handles database updating of XML for new releases
BioMart - a distributed architecture

MySQL ORACLE PostgreSQL

XML XML XML

XML XML XML

ANSI SQL

XML XML XML
MartShell (MQL)

- Uses Mart Query Language (MQL) to generate queries:

 using <dataset> get <attributes> where <filters>

- Can chain datasets together:

 using Dataset1 get Attribute1 where Filter1=var1 as q;
 using Dataset2 get Attribute2 where Filter2=var2 and filter3 in q

- Can script and pipe:

 martshell.sh -E MQLscript.mql > results.txt
 martshell.sh -E MQLscript.mql | wc
MartShell examples

MartShell> using MSD.msd get pdb_id where resolution_less < 1.5 and has_ec_info only;
 193l
 194l
 1arb ...

MartShell> using MSD.msd get pdb_id where resolution_less < 1.5 and has_ec_info only as q;
MartShell> using Ensembl.hsapiens_gene_ensembl get sequence transcript_flanks+1000 where pdb in q;

ENST00000270142.2 ENSG00000142168.2
 strand=forward chr=21 assembly=NCBI34
downstream flanking sequence of transcript only
 AAACTAAATTAGCTCTGATACTTATTTATATAAACAGCTTCAGTGGAA
....
MartShell examples (cont)

MartShell> using Ensembl.hsapiens_gene_ensembl
get gene_stable_id, hugo, go_description
where chr_name = 3 and
 3.band_start = q22.1 and
 3.band_end = q22.3
and est.anatomical_site = retina;

ENSG00000051382 PIK3CB phosphoinositide 3-kinase complex
ENSG00000163914 RHOG-protein coupled photoreceptor activity ...
What do you get?

- Flexible interfaces configurable according to your spec
- ‘Performance-assured’ data retrieval
- Query chaining across data sources
- Administrator tools for modifying and deploying the system
BioMart - an open project

- All code and data freely available
 - Website
 - www.ebi.ac.uk/biomart
 - www.ebi.ac.uk/biomart/martview
 - Public MySQL server
 - martdb.ebi.ac.uk
 - Ftp
 - ftp.ebi.ac.uk
- Mailing lists
 - mart-dev
 - Mart-announce
Acknowledgements

- Arek Kasprzyk
- Darin London
- Damian Keefe
- Andreas Kahari
- Craig Melsopp
- Will Spooner
- Katerina Tzouvara